

Sample Paper

(2020-21)

Class 9 & 10

Unicus Non-Routine Mathematics Olympiad

Section – Class* *Syllabus covered	Total Questions	Marks per Question	Total Marks
Classic Section – Class 9 & 10	10	3	30
Scholar Section – Class 9 & 10	10	6	60
Grand Total	20		90
Note: There will be negative marking of 1/3 rd of the marks allotted for that question if the answer is incorrect.			

- 1. The pth term of an A.P is 20 and qth term is 10. Find the sum of first (p+q)th terms.
 - a) $5(p+q/p-q){(3p-(q-1))}$
 - b) 5(p+q/p-q){(3p-(q+1))}
 - c) $5(p+q/p-q){(3p-(-q-1))}$
 - d) 5(p+q/p-q){(3p-(1-q))}

Correct Answer: b

3 Marks

- 2. It α and β are the roots of the equation $x^2 px + q = 0$ and $\alpha > 0$, $\beta > 0$. then the value of $\alpha^{1/4} + \beta^{1/4} =$
 - a) $[\dot{P} + \sqrt{q} + 4q^{1/4} \sqrt{(P + \sqrt{q})}]^4$
 - b) [P + $6\sqrt{q}$ + $4q^{1/4}\sqrt{(P + 2\sqrt{q})}]^4$
 - c) [P + \sqrt{q} + 4q^{1/4} $\sqrt{(P + 4\sqrt{q})}^4$
 - d) [P + $6\sqrt{q}$ + $4q^{1/4}\sqrt{(P + 4\sqrt{q})}]^4$

Correct Answer: b

3 Marks

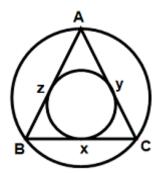
- **3.** Let α , β , γ are the roots of $x^3 + qx + r = 0$, then the equation whose roots are $\beta^2 + \beta\gamma + \gamma^2$; $\gamma^2 + \gamma \alpha + \alpha^2$ and $\alpha^2 + \alpha\beta + \beta^2$ is.
 - a) $(y q)^3 = 0$
 - b) $(y + q)^3 = 0$
 - c) $(y + 2q)^3 = 0$
 - d) $(y 2q)^3 = 0$

Correct Answer: b

3 Marks

- 4. The area of a square inscribed in a semicircle to the area inscribed in a quadrant of the same circle.
 - a) 2:1
 - b) 3:2
 - c) 5:3
 - d) 8:5

Correct Answer: d


Unicus Non-Routine Mathematics Olympiad (UNRMO)

- 5. BC is the diameter of a semi circle. The sides AB and AC of a triangle ABC meet the semi circle in p and q respectively. PQ subtends 140° at the centre of the semi circle then $\angle A = ?$
 - a) 10⁰
 - b) 20⁰
 - c) 30⁰
 - d) 40⁰

Correct Answer: b

3 Marks

6. Let the circum radius of $\triangle ABC$ be 4 and the in radius of XYZ be 2 of the area of ABC = 32, then area of XYZ = ?

- a) 8
- b) 16
- c) 4
- d) 20

Correct Answer: b

3 Marks

7. It $\cos x + \cos^2 x = 1$, then $\sin^{12} x + 3\sin^{10} x + 3\sin^8 x + \sin^6 x =$

- a) 0
- b) √2
- c) 1
- d) 2

Correct Answer: c

- The angle of elevation of the top of a tower from a point A due south of the tower is x and from B due east of the tower is y. If AB = h, then calculate the height of the tower.
 - a) $h/\sqrt{(\cot^2 x + \cot^2 y)}$
 - b) $h/\sqrt{(\cot^2 x \cot^2 y)}$
 - c) $2h/\sqrt{(\cot^2 x \cot^2 y)}$
 - d) $2 \tan x / \sqrt{(\cot^2 x + \cot^2 y)}$

Correct Answer: a

3 Marks

- 9. It the point $\{x_1 + t (x_2 x_1), y_1 + t (y_2 y_1)\}$ divides the join of (x_1, y_1) and (x_2, y_2) internally then the condition of t will be.
 - a) t < 0
 - b) t = 1
 - c) 0∠t∠1
 - d) None of these

Correct Answer: c

3 Marks

10. If the mean of a frequency distribution is 8.1 and Σ f_ix_i : = 132 + 5x, Σ f_i = 20, then x = ?

- a) 3
- b) 4
- c) 5
- d) 6

Correct Answer: d

3 Marks

11. Solve the equation $(x - 1)^4 + (x - 5)^4 = 82$.

- a) $x = \pm 1, 4, 2$
- b) x = 4, 2, -3 -5i, 2 + i
- c) $x = 3 \pm 5i, 4, 2$
- d) $x = 3 \pm 5i, \pm 1$

Correct Answer: a

```
12. Simplify [\sqrt[3]{}(6\sqrt{a^9})]^4 [6\sqrt{(\sqrt[3]{a^9})}]^4 is
```

- a) a¹⁶
- b) a¹²
- c) a⁸
- d) a⁴

Correct Answer: d

6 Marks

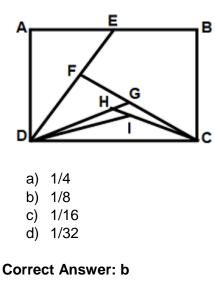
13. Given that x⁶ + 4x⁵ + 6x⁴ + 6x³ + 4x² + 2x + 1 can be factorized as (x² + ax + 1) (x⁴ + bx³ + cx² + dx + 1) then (a + b) = ?
a) 1
b) 2
c) 3
d) 4

Correct Answer: d

6 Marks

14. Four circles of r = 1, are each tangent of two sides of a square and externally tangent to a circle of r = 2. It the area of the square is A, then A - $12\sqrt{2}$?

- a) 14
- b) 21
- c) 22
- d) 24


Correct Answer: c

6 Marks

- **15.** Two circle with centres A and B intersect at points P and Q so that $\angle PAQ = 60^{\circ}$ and $\angle PBQ = 90^{\circ}$. What is the ratio of the area of the circle with centre A to the area of the circle with centre B?
 - a) 3:1 b) 3:2
 - c) 4:3
 - d) 2:1

Correct Answer: d

16. Square ABCD has an area 4, E is the midpoint of AB. Similarity F, G, H and I are mid points of DE, CF, DG and CH, then area Δ IDC = ?

6 Marks

17. It tan θ = 1 - e², then sec θ + tan³ θ cosec θ = ?

- a) $(1 e^2)^{3/2}$
- b) $(2 e^2)^{1/2}$
- c) $(2 e^2)^{3/2}$
- d) None of these

Correct Answer: c

6 Marks

18. The value of $(1 + \cos \pi/8)$ $(1 + \cos 3\pi/8)$. $(1 + \cos 5\pi/8)$ $(1 + \cos 7\pi/8)$ is equal to

- a) 1/8
- b) -1/8
- c) 1/4
- d) -1/4

Correct Answer: a

19. If $S_n = \sum t_r = 1/6$ n (2n² + 9n + 13), then $\sum \sqrt{t_r} = ?$ a) 1/2 n (n + 1) b) 1/2 n (n + 2) c) 1/2 n (n + 3) d) 1/2 n (n + 5)

Correct Answer: c

6 Marks

20. If $u_i = (x_i - 25)/10$, $\Sigma f_i u_i = 20$, $\Sigma f_i = 100$, then x̄ = ? a) 23 b) 24 c) 27 d) 25

Correct Answer: c